TIG Welding Equipment : Gas Tungsten Arc Welding (GTAW) Equipment

Gas Tungsten Arc Welding. In tungsten inert gas (TIG) welding, (also known as GTAW), an arc is struck between a virtually non-consumable tungsten electrode and the workpiece. The heat of the arc causes the edges of the work to melt and flow together. Filler rod is often required to fill the joint. During the welding operation, the weld area is shielded from the atmosphere by a blanket of inert argon gas. A steady stream of argon passes through the torch, which pushes the air away from the welding area and prevents oxidation of the electrode, weld puddle, and heat affected zone.

The basic equipment requirements for manual TIG welding are shown in figure 5-20. Equipment consists of the welding torch plus additional apparatus to supply electrical power, shielding gas, and a water inlet and outlet. Also, personal protective equipment should be worn to protect the operator from the arc rays during welding operations.

Gas Tungsten Arc Welding (GTAW) : TIG Welding Equipment setup


Different types of TIG welding equipment are available through normal supply channels. Water-cooled torches and air-cooled torches are both available. Each type carries different amperage ratings. Consult the appropriate manual covering the type torch used.


When TIG welding, Argon is supplied in steel cylinders containing approximately 330 cu ft at a pressure to 2000 psi (13,790 kPa). A single or two stage regulator may be used to control the gas flow. A specially designed regulator containing a flow meter, as shown in figure 5-21, may be used. The flow meter provides better adjustment via flow control than the single or two stage regulator and is calibrated in cubic feet per hour (cfh). The correct flow of argon to the torch is set by turning the adjusting screw on the regulator. The rate of flow depends on the kind and thickness of the metal to be welded.

Argon regulator with flowmeter

Blanketing of the weld area is provided by a steady flow of argon gas through the welding torch (fig. 5-22). Since argon is slightly more than 1-1/3 times as heavy as air, it pushes the lighter air molecules aside, effectively preventing oxidation of the welding electrode, the molten weld puddle, and the heat affected zone adjacent to the weld bead.

TIG welding Torch

The tremendous heat of the arc and the high current often used usually necessitate water cooling of the torch and power cable (fig. 5-22). The cooling water must be clean; otherwise, restricted or blocked passages may cause excessive overheating and damage to the equipment. It is advisable to use a suitable water strainer or filter at the water supply source. If a self-contained unit is used, such as the one used in the field (surge tank) where the cooling water is recirculated through a pump, antifreeze is required if the unit is to be used outdoors during the winter months or freezing weather. Some TIG welding torches require less than 55 psi (379 kPa) water pressure and will require a water regulator of some type. Check the operating manual for this information.

?TIG Torch Nomenclature (fig. 5-22).

(1) TIG Torch cap. Prevents the escape of gas from the top of the torch and locks the electrode in place.

(2) TIG Torch collet. Made of copper; the electrode fits inside and when the cap is tightened, it squeezes against the electrode and locks it in place.

(3) TIG Torch gas orifice nut. Allows the gas to escape.

(4) TIG Torch gas nozzle. Directs the flew of shielding gas onto the weld puddle. Two types of nozzles are used; the one for light duty welding is made of a ceramic material, and the one for heavy duty welding is a copper water-cooled nozzle.

(5) TIG Torch hoses. Three plastic hoses, connected inside the torch handle, carry water, gas, and the electrode power cable.